Working Group 32
Report 111-2010

The World Association for
Waterborne Transport Infrastructure

Presentation by
Bruce Lambert
Jim McCarville

“Setting the course”
Outline

• General Facts on Waterways
• PIANC
• PIANC Working Group 32 History
• Performance Measure framework
• Inland Waterway Performance Measures
• Final Thoughts
Waterway Usage - Russia, Europe and U.S., 1970-2006

Waterway Kilometers and Share

<table>
<thead>
<tr>
<th>Country</th>
<th>Waterway Kilometers</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>110,000</td>
<td>18%</td>
</tr>
<tr>
<td>Russia</td>
<td>102,000</td>
<td>16%</td>
</tr>
<tr>
<td>Brazil</td>
<td>50,000</td>
<td>8%</td>
</tr>
<tr>
<td>United States</td>
<td>41,009</td>
<td>7%</td>
</tr>
<tr>
<td>Indonesia</td>
<td>21,579</td>
<td>3%</td>
</tr>
<tr>
<td>Colombia</td>
<td>18,000</td>
<td>3%</td>
</tr>
<tr>
<td>Vietnam</td>
<td>17,702</td>
<td>3%</td>
</tr>
<tr>
<td>European Average</td>
<td>52,332</td>
<td>8%</td>
</tr>
</tbody>
</table>

![Graph showing waterway usage from 1970 to 2006 for Russia, US, and EU 26 countries.](image-url)

Setting the course

www.pianc.org
Some Recent US Studies Crossing Multimodal Tradeoffs

- Black Warrior Tenn-Tom Waterway System
- Minnesota Bridge Collapse
- Business Realignment Estimates - FHWA
- (NCHRP) Report 586: Rail Freight Solutions to Roadway Congestion
- Lock and Dam Closures
 - Chickamauga Locks
 - Emsworth, Dashields, and Montgomery
- Marine Highway Program
Closures Cost Money!

NETS (IWR-USACE)

- Greenup 2003 Closure (52 days)- $42 Million
- Hannibal Locks 2005 Closure (5 days)-$5 Million
- Lock 27 Closures
 - (August 2007)-$3.9 Million
 - (Oct 2005-Feb 2006)- $2.7 Million
- McAlpine (August 2004)-$6.3 million

GLOBAL Insight – Upper Miss 90 Day Closure

- $118.6 million for Waterway freight
- $482.8 million by rail
- $1.50 billion by truck

“Setting the course”
Technology Can Help Promote the Waterway Industry

• Demonstrate Economic Importance
• Demonstrate Waterways Reliability
• Improve Safety and Emergency Response
• Equipment management
• Use Better Information to Manage and Gauge System effects of closures
What is PIANC?
What PIANC Stands For

The global organisation providing guidance for sustainable waterborne transport infrastructure for ports and waterways

- PIANC is the forum where professionals from around the world join forces to provide expert advice on cost-effective, reliable and sustainable infrastructure to facilitate the growth of waterborne transport.

- Established in 1885, PIANC is the longest-standing organisation in its field, and continues to be the leading partner for governments and private sector in the design, development and maintenance of ports, waterways and coastal areas.
PIANC’s Mission

• To provide expert guidance and technical advice
 – Bringing together the best international experts, both public and private, on technical, economic and environmental issues pertaining to waterborne transport infrastructure
 – High-quality Technical Reports
 – International Commissions and Working Groups

• To keep the international waterborne transport community connected
 – Four-yearly International Congresses
 – Four-yearly PIANC-COPECDEC International Conferences on Coastal and Port Engineering in Developing Countries
 – Quarterly magazine ‘On Course’
 – E-Newsletter ‘Sailing Ahead’
 – Our website: www.pianc.org

• To support Young Professionals and Countries in Transition

To remain the leading international source of waterborne transport-related information in the 21st century

“Setting the course”
Waterborne transport, a vital solution for today

A powerhouse for the world economy

Waterborne transport depends on the quality of its infrastructure. PIANC is the only global organisation providing guidance for the development of reliable and cost-effective infrastructure for waterborne transport.

An unrivalled environmental footprint

Today, waterborne transport offers the most sustainable options for freight transport worldwide. PIANC greatly contributes to this from an infrastructural point of view.

Putting safety first

PIANC actively promotes a common technical culture of coastal engineering through its international Working Groups.

“Setting the course”
PIANC’s Membership

More than 30 Qualifying Members
(i.e. governmental and non-governmental organisations representing a country)

More than 450 Corporate Members
(port authorities, chambers of commerce, universities, other public- and private-sector organisations)
and 5 Platinum Partners

More than 2,000 Individual Members
(professionals and students included)
How PIANC work

- MANAGEMENT

Annual General Assembly: 1 meeting per year (May)
- 2011: Berlin (Germany)
- 2012: Spain
- 2013: Marseille (France)
- 2014: San Francisco (USA)
 * Delegations of all Qualifying Members represented
 * Highest decision power.

Council: 1 meeting per year (May)
* First Delegates and ExCom members.

ExCom: 3 meetings per year (February, May, October)
* President, Secretary-General, 4 Vice-Presidents, Commission Chairpersons

“Setting the course”
How PIANC works

• **Our Commissions and Working Groups reflect the unique variety of topics and issues covered by PIANC**

 - 4 commissions for technical and scientific activities, focusing on: inland navigation, maritime navigation, recreational navigation and environmental matters.

 - 1 commission for international co-operation and relations with Countries in Transition.

 - Commissions execute PIANC’s Strategic Plan, co-ordinate the work of our technical Working Groups, and provide reference information for conferences and publications.

 - Participation open to delegates from each member country.

 - **Specific commission (YP-Com) - create an international network of Young Professionals**
PIANC Working Group 32
History
Terms of Reference

- Reflect the critical success factors
- Improve the overall performance of inland waterway navigation (IWN)
- Set common definitions, standards, and measurements
- Encourage industry-wide adoption
- Increase attractiveness for users
- Technical and non-technical performance criteria
- Evaluation of the elements
- Development of a list of criteria or indicators for each element to validate
- Determination of an assessment method to rank
Objectives of WG32

- Intermodal applicability
- Comparability with other transport modes
- Performance measurement system appropriate for all kind of inland waterways
- Standardized approach (reference model)
- Internationally accepted and applied guidelines
- Standard reference document used by national administrations
InCom WG 32 - Performance Indicators for Inland Waterways Transport

- September 2007
 - Official start of WG 32
- September 2007
 - Basic study of Performance Indicators
 - General introduction and fundamental theories
- September 2008
 - Intermediate Report
- January 2009
 - New structuring of the contents
 - Elaboration of the Manual
- February 2010
 - Completion of the Final Report Manual
 - on Performance Indicators for Inland Waterways Transport
- August 2010
 - Released Final report

“Setting the course”

www.pianc.org
Members

- Reinhard Pfliegl, Chairman
- Member countries
 - Austria, Belgium, France, Germany, The Netherlands, U.S.
Performance Indicators shall...

- Affect strategic, tactical and operational planning and control
- Play an important role in setting goals, evaluating performance and determining future course of action
- Identify an organization’s success
- Analyze whether customer’s and stakeholder’s needs are met

“Setting the course”
6 Steps to Define Performance Indicators

- Particularise the necessary basic data
- Recommend a potential data source
- Describe the calculation method
- Explain the measurement unit
- Suggest a collection regularity
- Define an objective
Performance indicators within the supply chain

Scope of indicators

“Setting the course”

www.pianc.org
Report 111-2010
Details
<table>
<thead>
<tr>
<th>Area of application ID</th>
<th>Name of the Area of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance indicator ID</td>
<td>Name of the performance indicator</td>
</tr>
<tr>
<td>Description</td>
<td>Detailed description of the provided information</td>
</tr>
<tr>
<td>Calculation</td>
<td>Formula that describes how to calculate the performance indicator</td>
</tr>
<tr>
<td>Terms</td>
<td>Definition of terms which are used within the formulas</td>
</tr>
<tr>
<td>Information</td>
<td>Additional information that is necessary for deeper understanding</td>
</tr>
<tr>
<td>Measure</td>
<td>Measurement unit in words</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Collection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>365</td>
</tr>
<tr>
<td>Weekly</td>
<td>52</td>
</tr>
<tr>
<td>Monthly</td>
<td>12</td>
</tr>
<tr>
<td>Quarterly</td>
<td>4</td>
</tr>
<tr>
<td>Semi-annually</td>
<td>2</td>
</tr>
<tr>
<td>Annually</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
<th>What is the objective that is followed by this performance indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>Further information or comment on the performance indicator</td>
</tr>
<tr>
<td>Complexity</td>
<td>Indicates the level of implementation corresponding to the level of complexity of the recommended PI. It is therefore differentiated in three categories:</td>
</tr>
<tr>
<td></td>
<td>Level 1</td>
</tr>
<tr>
<td>Application</td>
<td>Operation</td>
</tr>
</tbody>
</table>
Areas of Application

1. Infrastructure
2. Ports
3. Environment
4. Fleet and Vehicles
5. Cargo and Passengers
6. Information and Communication
7. Economic Development
8. Safety
9. Security
1. Infrastructure

- Availability of Locks
- Lock Utilization
- Availability of Core Waterway Infrastructure
- Capacity of Waterway section
- Dredging/Maintenance of waterway
2. Ports

- Handling Capacity
- Storage Capacity Utilization
- Waiting time for service
- Utilization of handling capacity
3. Environment

- Fuel Consumption
- Emission Air
- Emission Noise
- Water Quality
- Construction and Maintenance
4. Fleet and Vehicles

- Maintenance, service, operating supplies
- Capacity
5. Cargo and Passengers

- Cargo Transport
- Passenger Traffic
- Perceived quality/user satisfaction with cargo and passenger transport
6. Information and Communication Technology

- RIS Coverage
- Frequency of updating electronic fairway charts
- Availability of electronic freight markets/freight exchange
- Accuracy of electronic fairway charts
- Availability of electronic fairway information
- Accuracy of AIS/tracking & Tracing
- Availability of electronic reporting
- Availability of port information system within specific waterway regime

"Setting the course"
7. Economic Development

- Employment
- Inland Waterway transport volume compared to gross domestic product
- Economic impact of passenger and cargo transport
- Regional and local development
8. Safety

- Injuries, fatalities, material damages
- Accidents
- Economic impact of accidents
9. Security

• Thefts
• Access Control
Final Thoughts

- WG focus is on public and private sector who may not be “aware” of inland water
- Designed to show SMART indicators
- Focus on comparability with other modes
- Usefulness to US Section
Thank you

Contact Information

Bruce Lambert
Executive Director
Institute for Trade and Transportation Studies
540-455-9882
bruce@ittsresearch.org
http://www.ittsresearch.org

Smartrivers

Sept 13-16, 2011
New Orleans, LA
Call for Abstracts out now